Sharp Cusa and Becker-Stark inequalities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Becker-Stark-Type Inequalities for Bessel Functions

Ling Zhu Department of Mathematics, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China Correspondence should be addressed to Ling Zhu, [email protected] Received 22 January 2010; Accepted 23 March 2010 Academic Editor: Wing-Sum Cheung Copyright q 2010 Ling Zhu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted us...

متن کامل

Simple Proofs of the Cusa–huygens–type and Becker–stark–type Inequalities

In this paper, we respectively give some simple proofs of the Cusa-Huygensand Becker-Stark-type inequalities presented by Chen and Cheung in [9]. Mathematics subject classification (2010): 26D20.

متن کامل

New Sharp Bounds for the Bernoulli Numbers and Refinement of Becker-Stark Inequalities

Copyright q 2012 Hua-feng Ge. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We obtain new sharp bounds for the Bernoulli numbers: 2 2n !/ π2n 22n − 1 < |B2n| ≤ 2 22k − 1 /22k ζ 2k 2n !/ π2n 22n − 1 , n k, k 1, . . . , k ∈ N , an...

متن کامل

Sharp Boundary Trace Inequalities

This paper describes sharp inequalities for the trace of Sobolev functions on the boundary of a bounded region Ω ⊂ R . The inequalities bound (semi-)norms of the boundary trace by certain norms of the function and its gradient on the region and two specific constants kρ and kΩ associated with the domain and a weight function. These inequalities are sharp in that there are functions for which eq...

متن کامل

Sharp Jackson inequalities

For trigonometric polynomials on [− , ] ≡ T , the classical Jackson inequalityEn(f )p C r (f, 1/n)p was sharpened by M. Timan for 1<p<∞ to yield n−r { n ∑ k=1 ksr−1Ek(f )p }1/s C r (f, n−1)p where s =max(p, 2). In this paper a general result on the relations between systems or sequences of best approximation and appropriate measures of smoothness is given. Approximation by algebraic polynomials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2011

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2011-136